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The evolution of the rotation of a gyrostat satellite with slow rotor spinup is described in the adiabatic approximation. 
Formulae are obtained for the probabilities of various outcomes of the evolution. Probability phenomena arise owing to separatrix 
crossing. 0 2001 Elsevier Science Ltd. All rights reserved. 

Dual-spin satellites constitute one of the main types of unmanned spacecraft. In the principal approxi- 
mation, such a satellite consists of two rigid bodies connected by a rigid shaft. One of the bodies -the 
platform-has zero (small) angular velocity of rotation; the other - the rotor - is spinning rapidly relative 
to the platform. An onboard electric motor regulates the angular velocity of the rotor relative to the 
platform. The large angular momentum of the system stabilizes the satellite in an inertial frame of 
reference, while the non-rotating platform enables investigations to be conducted in a given space 
direction. 

If the shaft is aligned with a principal central axis of inertia of one of the bodies, which is dynamically 
symmetrical about that axis, the system of two rigid bodies is a gyrostat. In the simplest case, the shaft 
is aligned with the common direction of the principal central axes of inertia of both bodies. Such a system 
is called an axial gyrostat. Possible complications of the problem arise in view of the fact that both bodies 
may have a triaxial ellipsoid of inertia, and in addition one or both bodies may be dynamically unbalanced 
relative to the shaft direction. 

After being placed in orbit, the platform and the rotor are rigidly connected and rotate about the 
shaft direction as a single rigid body. Then the motor spins up the rotor relative to the platform, in a 
direction coinciding with that of the initial spin. Thus, the angular velocity of the platform tends to zero, 
while the angular momentum of the rotor becomes equal to the initial angular momentum of the system. 

It is well known [l] that even in the case of an axial gyrostat the satellite may overturn in the course 
of the above process: the final rotation of the device will take place about a principal axis of inertia 
orthogonal to the direction of the initial rotation. The reason is that, during rotor spinup, the phase 
trajectories of the system, lying on the two-dimensional constant angular momentum surface, may cross 
an instantaneous separatrix of the unperturbed problem (a gyrostat with a constant relative angular 
velocity of rotation) and reach qualitatively different domains of final motion. If the rotor is spinning 
at a slowly varying angular velocity, small changes in the initial conditions of the problem will cause 
the system to fall into the different domains into which the separatrices divide the constant angular 
momentum surface, and one can therefore use a probability-theoretic approach to investigate the 
evolution of the rotation. Numerically determined probabilities have been published for different 
outcomes of the evolution of rotation in this problem [l]. 

In this paper, previous results [2] will be used to obtain analytical expressions for the probabilities 
of different outcomes of the evolution of rotation in an axial gyrostat in the case of slowly varying angular 
velocity of the rotor; computations using finite formulae will be compared with the results of numerical 
integration of the initial equations of the problem. 

1. THE EQUATIONS OF MOTION 

Following a previously developed approach [l], consider an axial gyrostat in which the platform is 
dynamically symmetrical about the shaft, while the rotor has a triaxial ellipsoid of inertia (the shaft being 
aligned with a principal central axis of inertia of the rotor). Letx1,x2 and+ denote the principal central 
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axes of inertia of the gyrostat, where the x1 axis is the axis of the rotor and the frame of reference is 
rigidly attached to the rotor. 

The equations of motion of the system are 

dh 
-=12/3hh3, %=(Fh, -t]h, 

I, - I3 

dt 

where g, is the torque applied by the rotor to the platform, h, is the angular momentum of the platform 
about the x1 axis, hi is the angular momentum of the gyrostat relative to the xi axis, ZR is the moment 
of inertia of the rotor about the x1 a&, and Zi are the principal central moments of inertia of the gyrostat 
(i = 1,2, 3). 

Since there are no external forces, the angular momentum of the system is conserved, so that 

h’=h;+$+h;=const (1.2) 

We will introduce the following change of variables [l] 

xi= hi/h. i= 1,2,3 

l.k = hJh, ‘5 = ht&, E = - &,/R/h2 

Derivatives with respect to dimensionless time z are denoted by a dot, and we define dimensionless 
inertia parameters by 

ij = 1 - IRflj, j = 1, 2, 3 

Then the dimensionless equations of motion of the system become [l] 

x, =(i2 - i3 )X2X3. .+2 = (i3xI - W3. i3 =(jl-i2X1)X2. fi=-& 

and the dimensionless integral of the squared modulus of the angular momentum is 

(1.3) 

x;+x,z+x,2 =l (1.4) 

We will henceforth assume that the angular acceleration of the rotor is small, E -G 1, and, to tix our 
ideas, that ii > i2 > is, corresponding to a gyrostat with Zt > Zz > Zs. 

p) 
Initially, the gyrostat is rotating as a rigid body; thus the initial conditions of the problem (xi, x2, x3, 
are such that p = ps = xii,. If the gyrostat is initially rotating about an axis near the shaft azis, the 

initial data of the problem are close to (1, 0, 0, ii). During rotor spinup, the parameter p, characterizing 
the angular velocity of rotation of the platform, decreases from pc to zero. 

The expression for the dimensionless kinetic energy of rotation of the gyrostat has the form 

It is convenient [l] to introduce the following function together with T 

y=2T-p’/i, -I =-2px, -i2xz -i34 

We have 

j=2&x, (1.6) 

and in unperturbed motion (E = 0) the quantity y is constant. 

(1.5) 
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2. BIFURCATION OF THE EQUILIBRIA OF THE SYSTEM 
AND SLOW SEPARATRIX CROSSING 

The phase trajectories of system (1.3), considered on the sphere (1.4) with p = const, are level curves 
of the functiony (1.5). Rebuildings of the phase portrait of the system are determined by bifurcations 
of the singular point (1, 0,O). 

Analysis of the right-hand sides of the equations shows that when i2 c p this point is a centre 
(Fig. 1). At iz = p bifurcation occurs: the singular point becomes unstable and two stable singular points 
are formed, with coordinates 

xl =pli2, x2 =+Jl-p21i~, x3 =O (2.1) 

When i3 < ~1 c i2, there are two separatrices on the sphere (1.4), passing through the unstable singular 
point (1, 0, 0) and encircling the stable singular points (2.1). These separatrices divide the sphere 
into three domains Gr, G2 and G3 (Fig. 2). The area of the domain G, will be denoted by 
s, = S&L), Sr = Sz. 

Whenp= i3 a new bifurcation occurs: the point (1, 0, 0) again becomes stable and two unstable 
singular points are formed, with coordinates 

x, =p/i3. x2 = 0 x,=+JI-cIzlif (2.2) 

Thus, when 0 < ~1 < is there are four intersecting separatrices on the constant angular momentum 
sphere. They divide the sphere into four domains Gr, . . ., G4 (Fig. 3). 

As p + 0 the centres of the domains G1 and G2 (stable singular points (2.1)) tend to the points 
(0, kl, 0), while the unstable singular points (2.2) tend to the points (0, 0, 21). 

We now consider the complete system (1.3) for small E > 0. The divergence of the velocity vector of 
the motion in this system is equal to zero. Consequently, phase volume is conserved during the motion, 
and so phase volume (area) on the sphere (1.4) is also conserved. For smati E, therefore, system (1.3) 
has an adiabatic invariant [3]: the area S of the domain bounded by the instantaneous unperturbed 
trajectory (p = const, y = const) on the sphere (1.4) passing through the phase point, considered in 
the principal approximation, remains unchanged when the phase point moves away from the separatrix 
(one can choose either of the two domains into which the unperturbed phase trajectory divides the sphere 
(1.4)). The adiabatic invariance of S may be used to describe the motion up to the time it reaches the 
separatrix [2]. 

Let the motion in system (1.3) begin at p = pc E (i2, iI), and suppose the initial unperturbed phase 
trajectory (p = ho> bounds a domain of area So on the sphere; to fix our ideas, we take the domain 
containing the point (1, 0,O). 

x3 

Fig. 1 Fig. 2 
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Fig. 3 

If So c 2Sl(i3) = rc(l - @$), then, as shown by considering the adiabatic approximation, the 
perturbed phase trajectory crosses the separatrix at some p = p., where p is a root of the equation 
So = 2&(k), k E (i3, iz). After crossing the separatrix, the trajectory is trapped in one of the domains 
Gi or G,; further motion occurs in such a way that the area bounded by the unperturbed trajectory 
(u = const) in the domains Gi and G2 remains approximately constant and equal to St@). As lo + 0, 
the trajectory loops around thex2 axis, so that the gyrostat overturns. The initial conditions (at p = uc,) 
corresponding to capture in Si or S2 are mixed for small E, so that it makes sense to speak of the 
probabilities of capture in the domain Gi or G2. It follows from the symmetry of the problem that these 
probabilities are equal to l/2 (the definition of these probabilities will be discussed below). 

Now let So > ZS1(i3). Then the perturbed phase trajectory will cross the separatrix at some p = CL+, 
where p is a root of the equation So = &(u.) + 2Si(k), h E (iz, 0). After crossing the separatrix, the 
phase trajectory will be trapped in one of the domains Gi, G2, Gq, further motion will occur in such a 
way that the area bounded by the unperturbed phase trajectory will remain approximately constant, 
equal to the area at p = h of the domain in which capture has taken place (Si(k) for capture in Gi 
or G2 and S&J.) for capture in G,). Capture in Gi and G2 means that the gyrostat has overturned; 
capture in G4 implies rotation analogous to the initial rotation. The initial conditions corresponding 
to capture in Gi, G2 and G4 are mixed for small E, so that it makes sense to speak of the probabilities 
of capture in one of these domains. 

A probability-theoretical approach to problems of this type was introduced in [4,5]. The probabili 
P@4a) of capture of a trajectory with initial point Me = (x 10 , x 2o,x ) is defined as follows [5]. Let U( 8 

be a disk of radius 6 with centre MO on the sphere (1.4) and let 9’) be the set of initial data (at p = 
u+-J in I$) to which trajectories with capture in GI correspond. Then we define 

Fj(MO)= lim lim 
mes U\8*E’ 

6+0r+O mes U’“’ 
(2.3) 

where mes(*) is area on the sphere. The limit (2.3) exists and may be calculated by the formula [2] 

p,(MJ = 
dS, I dp 

2dS, /dp+dS,/dl.L’ (2.4) 

In this formula one must evaluate the derivatives d&/dp when p = c1., where p is the value of the 
parameter u, computed in the adiabatic approximation, at which a phase trajectory with initial point 
MO will cross the separatrix. 

The equations of the separatrix are expressed in terms of elementary functions using integral (1.5) 
of the unperturbed problem. Direct computation of the areas and their derivatives leads to the following 
result 
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A series of computations were carried out to compare the probabilities of different outcomes of the 
evolution of rotation obtained using the above closed formulae and by numerical integration of Eqs 
(1.3). The domain of initial conditions for Eqs (1.3) for which the values ofx2 andxs lie inside the square 
0 d x2 s 0.05; 0.5 < x3 < 0.55 was chosen on the unit sphere (1.4). Figure 4 illustrates one result of 
evolution of the gyrostat’s rotation during rotor spinup, given different initial data for Eqs (1.3), situated 
on the unit sphere (1.4) and having valuesx2 andx3 in a fragment of the square just defined (the complete 
picture differs only slightly from that shown here). A final motion with initial conditions inside the 
hatched strips occurs in the domain G4; the remaining field of the square consists of the initial data 
that lead to motion in the domains Gi and G2, that is, overturn of the satellite. The following values 
were chosen for the system parameters: ii = 0.7, i2 = 0.6, i3 = 0.5 and E = 10m4. As the results of 
numerical integration have shown, with these parameter values, the probabilities of a trajectory entering 
the domain G4 and the union of the domains Gt and G2 are 0.18 and 0.82, respectively. Computations 
based on closed formulae (2.4) and (2.5) give 0.17 and 0.83. The value of p corresponding to the 
separatrix crossing time was chosen as the mean value for all trajectories in the above square: p= 0.4902. 

3. FAST SEPARATRIX CROSSING 

We will now consider the case when the rotor spins up rapidly: E % 1. Put v = l/& % 1. Spinup begins 
when p = l.4, and ends at p = 0. In the principal approximation with respect to v, it may be assumed 
that the quantities xi cannot be changed during spinup. The gyrostat will not overturn if at the initial 
time, when p = p,,, the phase trajectory is in the domain G3 constructed for p = 0, that is, if at the 

Fig. 4 
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initial time one has i&x$ + &z c i$ In the next approximation with respect to v we find that during 
spinup the coordinates xi vary by amounts AXi, where 

Overturn does not occur if the initial point (xi, x2, x3) (when p = pc,) is such that the point 
(xi + Aq, x2 + Ax2, x3 + Ar3) is situated in the domain G3 constructed for p = 0. Use of relations (3.1) 
yields the following condition for non-overturn 

In conclusion, we note that separatrix crossing is of crucial importance in many present-day problems 
of rigid body dynamics. A survey of problems of this kind may be found in [6]. 

We wish to thank V V. Beletskii for discussing the results. 
This research was supported financially by the Russian Foundation for Basic Research (00-01-00538) 

and the International Association for Promoting Cooperation with Scientists from the New 
Independent States of the Former Soviet Union (INTAS 97-10771). 

REFERENCES 

1. HALL C. D., Resonance capture in axial gyrostat. 1. Astronaut. Sci, 1995,43,2,127-138. 
2. NEISHTADT, A. I., Separatrix crossing in the resonance problem with a slowly varying parameter. PrikL Mat. Me&, 1975, 

39,4,621-632. 
3. ARNOLD, V I., Mathematical Methods of CkzssicuZMechunics. Nauka, Moscow, 1989. 
4. LIPSHITS, I. M., SLUTSKIN, A A. and NABUTOVSKII, V M., The phenomenon of the scattering of charged quasi-particles 

at singular points in p-space. Doll. Akaa! Nauk SSSR, 1961,137,3,553-556. 
5. ARNOLD, V I., Small denominators and problems of the stability of motion in classical and celestial mechanics. Vspekhi 

Mat. Nauk, 1963,18,6,91-192. 
6. NEISHTADT A. I., Probability phenomena due to separatrix crossing. Chaos, 1991,1,1,42-48. 

Tmnslated by D.L. 


